1 Rappels sur les équations de droites

1.1 Propriété

Propriété

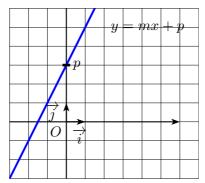
Soit $(O; \overrightarrow{i}; \overrightarrow{j})$ un repère orthonormal.

Soit \mathcal{D} une droite.

Deux cas sont possibles:

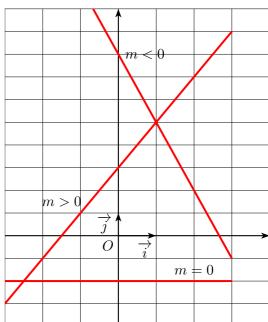
- \mathscr{D} est parallèle à l'axe des ordonnées : tous les points de \mathscr{D} ont la même abscisse k. On dit alors que l'équation de \mathscr{D} est : x = k
- \mathscr{D} est sécante à l'axe des ordonnées. Les coordonnées $(x \; ; \; y)$ des point de \mathscr{D} sont liées par une relation de la forme y = mx + p. m et p sont caractéristiques de \mathscr{D} :
 - * p est appelé l'ordonnée à l'origine de \mathscr{D} .
 - * m est le coefficient directeur de \mathscr{D} .

p est l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées.

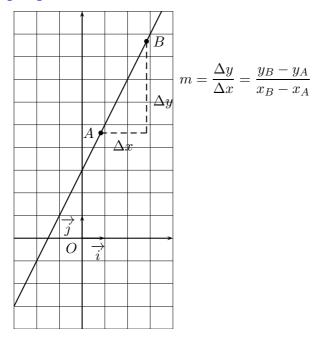


m mesure l'inclinaison de la droite. (Si α est l'angle que fait la droite par rapport à l'horizontale, on a : $m = \tan(\alpha)$

- Si m > 0, la fonction affine associée à la droite est croissante.
- Si m=0, la fonction affine associée à la droite est constante et la droite est parallèle à l'axe des ordonnées.
- Si m < 0, la fonction affine associée à la droite est décroissante.



1.2 Interprétation graphique du coefficient directeur :



Comment utiliser le coefficient directeur pour tracer une droite?

Exemple : Tracer la droite d'équation y = 3x - 5.

Pour x = 0, on a $y = 3 \times 0 - 5 = -5$ donc cette droite passe par le point A de coordonnées (0; -5).

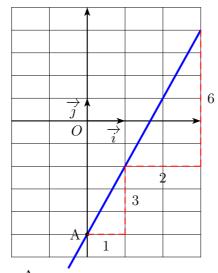
Son coefficient directeur est m = 3.

Nous avons vu que le coefficient directeur pouvait s'écrire $\frac{\Delta y}{\Delta x}$.

Par conséquent : $m = \frac{\Delta y}{\Delta x}$ donc $\Delta y = m \times \Delta x$.

Ici : $m = 3 = \frac{3}{1}$

Si l'on **choisit** de prendre $\Delta x = 1$, alors $\Delta y = 3$. Par conséquent, en partant de A, l'on se déplace de 1 unité en abscisses et de 3 unités en ordonnées.

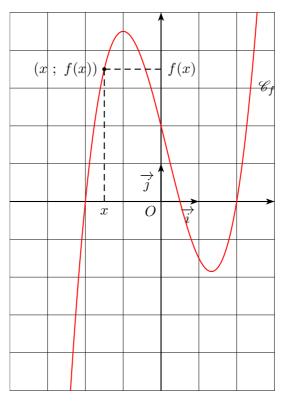


Si m est le coefficient directeur, on a : $m = \frac{\Delta y}{\Delta x}$ donc $\Delta y = m \times \Delta x$; en choisissant une valeur pour Δx , on calcule la valeur correspondante pour Δy .

Si, au lieu de prendre $\Delta x = 1$, on avait pris $\Delta x = 2$, on aurait trouvé $\Delta y = 3 \times 2 = 6$; en partant de n'importe quel point de la droite (A ou un autre), si l'on se déplace de 2 unités parallèlement à l'axe des abscisses, on se déplace dans le même temps de 6 unités parallèlement à l'axe des ordonnées.

2 Rappels sur les courbes représentatives d'une fonction

Si f est une fonction définie sur un ensemble \mathscr{D} , la courbe représentative \mathscr{C}_f de f est l'ensemble des points de coordonnées (x ; f(x)).



3 Nombre dérivé d'une fonction et fonction dérivée

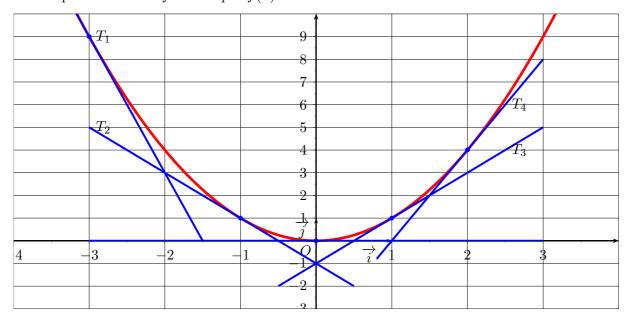
Définition

Soit f une fonction définie sur \mathcal{D} .

Si \mathscr{C}_f admet une tangente au point de \mathscr{C}_f d'abscisse a, on note $\mathbf{f}'(\mathbf{a})$, nombre dérivé de \mathbf{f} en a, le coefficient directeur de la tangente à \mathscr{C}_f en ce point.

Exemple : Avec la fonction carrée

Soit la courbe représentative de f définie par $f(x) = x^2$



1. On trouve graphiquement f'(-3) = -6, f'(-1) = -2, f'(0) = 0, f'(1) = 2 et f'(2) = 4. En effet, T_1 passe par les points de coordonnées (-3; 9) et (-2; 3), donc $f'(-3) = \frac{3-9}{-2-(-3)} = -6$. T_2 passe par les ponts de coordonnées (-2; 3) et (-1; 1) donc $f'(-1) = \frac{1-3}{-1-(-2)} = -2$. (xx') a un coefficient directeur nul.

 T_3 passe par les points de coordonnées (1 ; 1) et (2 ; 3) donc $f'(1) = \frac{3-1}{2-1} = 2$. T_4 passe par les points de coordonnées (2 ; 4) et (1 ; 0) donc $f'(2) = \frac{0-4}{1-2} = \frac{-4}{-1} = 4$.

- 2. Pour x_A réel, on peut conjecturer que $f'(x_A) = 2x_A$.
- 3. La fonction f définie sur \mathbb{R} par $f(x) = x^2$ est dérivable sur \mathbb{R} . La fonction f', qui à tout réel x associe le nombre dérivé de f en x est défini sur \mathbb{R} par f'(x) = 2x

page 4 page 4page 4

3.1 Dérivée de fonctions usuelles

Définition

Si une fonction f définie sur un intervalle I admet en tout point de I un nombre dérivé (donc si la courbe \mathscr{C}_f admet une tangente en ce point), on dit que f est dérivable sur I.

La fonction qui, à tout réel x, associe le nombre dérivé f'(x), est appelé e fonction dérivée de f; on la note f'.

Voici le tableau des fonctions dérivées des fonctions usuelles (à savoir par cœur).

f(x) =	f'(x) =
$k, k \in \mathbb{R}$	0
x	1
x^2	2x
x^3	$3x^2$
$x^n \ (n \in \mathbb{N} \ n > 1)$	nx^{n-1}
$\frac{1}{x}(x \neq 0)$	$-\frac{1}{x^2}$

Exemples:

- 1. $f(x) = x^5$; $f(x) = x^n$ avec n = 5; $f'(x) = nx^{n-1} = 5x^4$
- 2. $f(x) = x^6$; $f(x) = x^n$ avec n = 6 donc $f'(x) = nx^{n-1} = 6x^5$
- 3. $f(x) = x^{10}$. $f(x) = x^{10} = x^n$ avec n = 10 donc $f'(x) = nx^{n-1} = 10x^9$

3.2 Opérations sur les fonctions dérivables

Soient u et v deux fonctions dérivables sur un intervalle I et k une constante. Alors, on a les formules suivantes :

Addition:	$(\mathbf{u} + \mathbf{v})' = \mathbf{u}' + \mathbf{v}'$
Soustraction:	$(\mathbf{u} - \mathbf{v})' = \mathbf{u}' - \mathbf{v}'$
Multiplication par une constante :	$(\mathbf{k}\mathbf{u})' = \mathbf{k}\mathbf{u}'$
Produit de deux fonctions:	$(\mathbf{u}\mathbf{v})' = \mathbf{u}'\mathbf{v} + \mathbf{u}\mathbf{v}'$
Inverse d'une fonction :	$\left(\frac{1}{\mathbf{u}}\right)' = -\frac{\mathbf{u}'}{\mathbf{u}^2} \ (v(x) \neq 0 \ \text{sur } I)$
Quotient de deux fonctions:	$\left(\frac{\mathbf{u}}{\mathbf{v}}\right)' = \frac{\mathbf{u}'\mathbf{v} - \mathbf{u}\mathbf{v}'}{\mathbf{v}^2} \ (v(x) \neq 0 \ \text{sur } I)$

Exemples:

- 1. $f(x) = 3x^2$; on peut voir cela comme f(x) = kg avec k = 3 et $g(x) = x^2$; f' = (kg)' = kg' donc f' = 3g' avec g'(x) = 2x d'où $f'(x) = 3 \times 2x = 6x$.
- 2. $f(x) = 5x^7$; on a de même : $f'(x) = 5 \times 7x^6 = 35x^6$. $f'(x) = 35x^6$
- 3. $f(x) = x^5 + x^2$; f = u + v avec $u(x) = x^5$ et $v(x) = x^2$ donc f' = (u + v)' = u' + v' avec $u'(x) = 5x^4$ et v'(x) = 2x. Par conséquent : $f'(x) = 5x^4 + 2x$.
- 4. $f(x) = \frac{3x+2}{2x+1}$; $f = \frac{u}{v}$ avec u(x) = 3x+2 et v(x) = 2x+1. $f' = \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ avec u'(x) = 3 et v'(x) = 2. Alors: $f'(x) = \frac{3(2x+1) - 2(3x+2)}{(2x+1)^2} = \frac{-1}{(2x+1)^2}$; $f'(x) = \frac{-1}{(2x+1)^2}$
- 5. $f(x) = \frac{1}{x^2 + x + 1}$. $f = \frac{u}{v}$ avec u(x) = 1 et $v(x) = x^2 + x + 1$ d'où $f' = \left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$ avec u'(x) = 0 et v'(x) = 2x + 1.

Par conséquent :
$$f'(x) = \frac{0(x^2 + x + 1) - 1(2x + 1)}{(x^2 + x + 1)^2}$$
 donc $f'(x) = -\frac{2x + 1}{(x^2 + x + 1)^2}$

Exercice : Equation de la tangente en un point d'une courbe représentative

Soit f la fonction définie par $f(x) = x^3 + 3x^2 + 4x - 6$.

Déterminer l'équation réduite de la tangente à C_f au point d'abscisse -1.

Méthode

1. Calculer f'(x):

$$f'(x) = 3x^2 + 6x + 4$$

2. En déduire alors f'(-1)

$$f'(x) = 3x^2 + 6x + 4$$

$$f'(-1) = 3 \times (-1)^2 + 6 \times (-1) + 4 = 1$$

3. Le coefficient directeur de la tangente à C_f au point d'abscisse -1 est 1 donc |m=1|

L'équation réduite de la tangente à C_f au point d'abscisse -1 est donc :

$$y = mx + p = x + p$$
 avec $\mathbf{m} = \mathbf{1}$

Or pour x = -1 f(x) = f(-1) = -8 donc les coordonnées du point A(-1, -8), qui appartient à C_f et donc aussi à la tangente, vérifient l'équation de la tangente :

$$-8 = -1 + p$$
 avec y = -8 et x = -1

$$-8 = -1 + p$$
 on "switch": $-1 + p = -8$ donc $p = -7$

Conclusion : l'équation réduite de la tangente à \mathcal{C}_f au point d'abscisse -1 est donnée par :

$$y = x - 7$$

Applications de la dérivation : variations et extremums locaux d'une fonction

Théorème

Soit f définie et dérivable sur un intervalle I.

- Si $f'(x) \ge 0$ sur I, alors f est croisante sur I.
- Si $f'(x) \leq 0$ sur I, alors f est décroisante sur I.
- Si f'(x) = 0 sur I, alors f est constante sur I.

Pour étudier les variations d'une fonction, on est donc amené à étudier le signe de la dérivée de cette fonction.

Exemples:

1. Etudier les variations de $f: x \longmapsto x^2 + 3x + 5$.

$$f$$
 est définie sur \mathbb{R} .

$$f'(x) = 2x + 3.$$

$$f'(x) = 0 \Leftrightarrow 2x + 3 = 0 \Leftrightarrow x = -\frac{3}{2}$$

$$f'(x) = 0 \Leftrightarrow 2x + 3 = 0 \Leftrightarrow x = -\frac{3}{2}.$$

$$f'(x) > 0 \Leftrightarrow 2x + 3 > 0 \Leftrightarrow x > -\frac{2}{3} \text{ et } f'(x) < 0 \Leftrightarrow x < -\frac{3}{2}.$$
On an déduit le tableau de variations:

On en déduit le tableau de variations

x	$-\infty$ $-\frac{3}{2}$ $+\infty$
f'(x)	+ 0 +
f(x)	$\frac{11}{4}$

La fonction f admet un maximum local en $-\frac{3}{2}$ égal à $\frac{11}{4}$

2. Etudier les variations de la fonction $f: x \mapsto \frac{2x+3}{5x+4}$ définie sur $\mathscr{D} = \left[-10 \; ; \; -\frac{4}{5}\right[\; \cup \; \right] -\frac{4}{5} \; ; \; 10\left[. \frac{1}{5}\right] = \frac{1}{5}$

$$f = \frac{u}{v}$$
 avec $u(x) = 2x + 3$ et $v(x) = 5x + 4$.

$$f' = \frac{v'v - uv'}{v^2}$$
 avec $u'(x) = 2$ et $v'(x) = 5$.

Par conséquent :
$$f'(x) = \frac{2(5x+4) - 5(2x+3)}{(5x+4)^2} = \frac{-7}{(5x+4)^2}$$
.

Pour tout x de \mathcal{D} , $(5x+4)^2 > 0$ donc f'(x) est du signe de -7, donc négatif.

On en déduit le tableau de variations :

x	-10 -	$\frac{5}{4}$ 10
f'(x)	_	_
f(x)	$\frac{17}{46}$	$\frac{23}{54}$

La fonction f admet un maximum local en -10 égal à $\frac{17}{46}$ et un minimum local en 10 égal à $\frac{23}{54}$

3. Etudier les variations de la fonction $f: x \mapsto 2x^3 + 15x^2 + 36x + 1$ sur \mathbb{R} .

$$f'(x) = 6x^2 + 30x + 36 = 6(x^2 + 5x + 6).$$

$$f'(x)$$
 est du signe de $x^2 + 5x + 6$

$$f'(x)$$
 est du signe de $x^2 + 5x + 6$.
?tude du signe : $\Delta = 5^2 - 4 \times 1 \times 6 = 1 > 0$.

L'expression a deux racines :
$$x_1 = \frac{-5 - \sqrt{1}}{2} = -3$$
 et $x_2 = \frac{-5 + \sqrt{1}}{2} = -2$.

Un trin Ùme du second degré $ax^2 + bx + c$ est du signe de a à l'extérieur de l'intervalle formé par les racines et du signe de -a entre les racines.

$$x^2 + 5x + 6$$
 est donc positif sur $]-\infty$; $-3]$ et sur $[-2; +\infty[$ et négatif sur $[-3; 2]$.

On en déduit le tableau de variations :

	x	$-\infty$		-3		-2	$+\infty$
f	f'(x)		+	0	_	0	+
j	f(x)	/	/	-26		-27	

La fonction f admet un maximum local en -3 égal à -26 et un minimum local en -2 égal à -27